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Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts
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Dynamic behavior of mixing fronts plays a crucial role in multifluid turbulent mixing. In this paper, we
derive an analytic solution for the dynamic evolution of mixing fronts driven by constant acceleration
Rayleigh-Taylor~RT! and impulsive acceleration Richtmyer-Meshkov instabilities, from a simple physics
model expressed as a pair of ordinary differential equations. An approximate closed form asymptotic evalua-
tion of the RT solution is obtained, through terms of orderO(1), as t→`. This three term expansion,
including lower order terms, is used to interpret experimental and simulation data. Our solutions improve on
previous analyses in their agreement with experimental data, in that we can fit both the slope and the intercept
of the Zb vs Agt2 experimental plots by adjusting parameters in our model. Since the experimental data are
close to self-similar, the improvement due to the lower order contributions in the asymptotic expansion is
modest. We also apply this analysis to simulation data, for which preasymptotic data exist. We reexamine
previous simulation data and determine an improved growth rateab50.0625. The present paper provides
concepts and tools to explore the preasymptotic aspects of these data.

DOI: 10.1103/PhysRevE.66.036312 PACS number~s!: 47.20.Ma, 47.52.1j
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I. INTRODUCTION

Chaotic mixing is a common and important phenomen
in basic science and in engineering applications. Small
turbances in a multifluid system produce buoyancy and sh
driven instabilities at an interface between distinct fluids@1#.
These instabilities grow and develop into turbulent mixi
zones consisting of bubbles of light fluid and spikes of hea
fluid, each penetrating into the opposite fluid. The evolut
and structure of these mixing zones have been studied
several decades, see, for example, Refs.@2–5#. The location
of the two edges of the mixing zone plays a distinguish
role, as the simplest and primary descriptor of the mix
process. The study of mixing processes is not only of th
retical interest. It also plays an important role in the study
inertial confinement fusion and late time supernova evo
tion.

The main contribution of the present work is to provide
detailed solution, expressed in closed form up to quadratu
for the entire dynamical evolution of the two mixing zon
edges for the Rayleigh-Taylor~RT! instability. The solution
is obtained through integration of an explicit differenti
equation for the mixing zone edges. The large time asym
totics of this solution are derived in closed form. The low
than leading order asymptotics display dependence on in
conditions for RT mixing, and their closed form expressi
contains approximations. This fact allows an improvemen
the fit of theory to experimental data. Reinterpretation of
simulation mixing rate data is also discussed.
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II. MOTION OF THE BOUNDARY

The nonlinear evolution of the edge of a mixing zo
resulting from~incompressible! RT or Richtmyer-Meshkov
~RM! unstable flows, can be described by the phenome
logical equation

~r i1kir i 8!
dVi

dt
5~r i2r i 8!g~ t !2~21! i

Cir i 8Vi
2

uZi u
, i 51,2.

~1!

Here i 515b ~bubble! and i 525s ~spike! denote the light
and heavy fluids, respectively. The index of the phase op
site to i is i 8532 i . Also Vi[dZi /dt is the velocity of the
edgei of the mixing zone. We assume that (21)iVi(t).0
for all t. Also g(t) is the gravitational acceleration,ki is an
added mass coefficient due to the existence of fluidi 8, r i is
the mass density of fluidi, and Ci is a phenomenologica
drag coefficient for the edge of fluidi.

Equation~1! has been divided by the volume for the pu
pose of normalization. Since the total drag force on a bub
or spike is proportional to its frontal surface area, upon
viding by this volume one is left with a longitudinal lengt
scale, given in our model byuZi u. The form of the drag force
reflects the assumption that the fluid infinitely far upstre
of the bubble or spike is stagnant.

The added mass parameterki allows consideration of dis-
tinct flow regimes. We consider cylindrical bubbles a
spikes~i.e., three-dimensional bubbles and spikes connec
continuously to their ambient phase!. Youngs @7# allows a
renormalization coefficient in front of the buoyancy term
©2002 The American Physical Society12-1
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which we set to unity here. This choice is consistent with o
overall objective of minimizing the number of experime
tally determined parameters in our model, and thus to m
mize the fraction of the limited experimental data which
actually predicted~rather than fit! by the model. Determina
tion of the drag coefficientCi and validation of Eq.~1!
through comparison with experiment was presented in R
@6#.

Spherical front bubbles and spikes, representing a p
breakup configuration of the bubble and spike tips, disc
nected from the ambient portion of their own phase, are a
modeled by Eq.~1!, but with a modified choice of the adde
masski . It is common to replace the lengthuZi u in Eq. ~1! by
a lengthL having its own dynamical evolution law. Finel
dispersed flows would then have a smaller value ofL, re-
flecting their smaller length scale.

A basic assumption of our analysis is that RT and R
mixing can be described by a single ordinary different
equation~ODE! with common drag and added mass coe
cients. In a previous study@6# this assumption was shown t
lead to results in good agreement with the existing exp
mental data on RT and RM instability. Equation~1! states
that the acceleration of an edge arises from the net effec
buoyancy and drag forces, an idea that was proposed fo
instability by Youngs@7#. Force laws similar in form were
used by Alonet al. @8,9# and Dimonteet al. @10–12# to ana-
lyze the trajectories of the spike and bubble fronts in RT a
RM instabilities. In previous work a self-similar solution
assumed and the bubble growth rate is determined by su
tution of the assumed solution into the equation. Here
derive an analytic solution for the entire evolution of the R
mixing fronts in terms of the physical parameters (A,Ci ,ki)
and the initial conditions. Therefore, this work provides
physical understanding for the self-similarity assumed in
other models. The dynamical transition of the system fr
an early ~but still chaotically mixing! behavior to the late
self-similarity regime is clearly displayed, and the depe
dence of the lower than leading order RT solution asymp
ics on initial conditions is obtained. We also present
analysis of experimental data that provides a physical in
pretation of the meaning of the intercepts of theh vs Agt2

line with the coordinate axes. Finally, an analysis of simu
tion data offers a possible explanation for the deviation of
h vs Agt2 curve from a straight line. A significant differenc
between our model and related models appearing in the
erature is in the treatment of the drag term in Eq.~1!. In our
model we have consistently@6# used the ambient fluid den
sity rk8 , as discussed by Landau@13#, instead of the displac
ing fluid densityrk used in work of others@8–12# ~a correc-
tion to some of the cited work has recently appeared@14#!.
Our expression leads to finite values ofCi in the limit of A
51 in contrast to the otherwise zero~infinite! drag coeffi-
cient describing a vacuum bubble~spike! rising in a fluid
~vacuum!. Also our expression givesA-dependent drag coef
ficients if the RT bubble mixing rateab is independent of
Atwood numberA. These results are consistent with bo
experiments and numerical simulations@7#.

For cylindrical bubbles and spikes, we setki;1, and Eq.
~1! becomes
03631
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dVi

dt
5~21! iAg~ t !2~21! iCi

12~21! iA

2

Vi
2

uZi u
, i 51,2,

~2!

where the drag coefficientCi is given by@6#

Ci5
1/a i2@12~21! iA#2ki@12~21! iA#

2@12~21! iA#
, ~3!

in which a i is the growth rate of fluidi in the self-similar
regime of RT mixing andA[(r22r1)/(r21r1) is the At-
wood number.

III. RT MIXING FRONTS

Assume steady acceleration, so thatg(t)5g is indepen-
dent of timet in Eq. ~2!. In order to solve the ODE~2!, we
work with scaled variables. LetVi8[Vi /AAguZi u represent
the scaled velocity of the RT mixing fronts anddt8
[dtAAg/uZi u the scaled differential time. Then the front a
celeration dVi /dt5AAguZi udVi8/dt1AgVi8

2/25AgdVi8/
dt81AgVi8

2/2. With these scaled variables, Eq.~2! becomes

dVi8

dt8
5~21! i2

~21! i

2
$11Ci@12~21! iA#%Vi8

2. ~4!

Noting thatuVi8u5(21)iVi8 , Eq. ~4! can be rewritten as

duVi8u
dt8

512 1
2 $11Ci@12~21! iA#%uVi8u

2. ~5!

As shown in Ref.@6#, the drag coefficientCi is a function of
A alone. For fixedA, Ci is a constant. Letai

2[ 1
2 $11Ci@1

2(21)iA#%. We integrate Eq.~4! to obtain

t82t085
1

2ai
ln

~11ai uVi8u! f i0

12ai uVi8u
, ~6!

where f i0[(12ai uVi08 u)/(11ai uVi08 u), uVi08 u[uVi8(t08)u, and
t08[t8(t5t0) are determined by initial conditions. Note th
16ai uVi8u50 is a fixed point of Eq.~5! and so the argumen
of the logarithm in Eq.~6! is always positive. The solution
branch uai uuVi8u,1 contains the RT late time asymptotic
and thus is the physical branch. Sincedt8 is a positive mul-
tiple of dt, we must chooset8.t08 , and then the branchai

.0 is selected. With this choice, 0, f i0,1.
Solving Eq.~6! for uVi8u gives the scaled velocities

uVi8u5
e2ai ~ t82t08!2 f i0

ai~e2ai ~ t82t08!1 f i0!
. ~7!

Noticing that
2-2
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uVi8u[
1

AAguZi u

duZi u
dt

5
d lnuZi u

dt8
, ~8!

and substituting Eq.~8! into Eq. ~7!, we have

d lnuZi u
dt8

5
e2ai ~ t82t08!2 f i0

ai~e2ai ~ t82t08!1 f i0!
. ~9!

Integrating Eq.~9! and using the formula

E dx

a1bemx5
1

am
@mx2 ln~a1bemx!#, ~10!

we find that the trajectories of the RT mixing fronts are giv
by

uZi u5uZi0uF f i01e2ai ~ t82t08!

11 f i0
G1/ai8

e2~ t82t08!/ai, ~11!

where Zi0[Zi(t08). Substituting Eq.~11! into Eq. ~7!, the
~unscaled! velocity of the RT mixing front can be expresse
as

uVi u5AAguZi0u
~e2ai ~ t82t08!2 f i0!

ai~e2ai ~ t82t08!1 f i0!
F f i01e2ai ~ t82t08!

11 f i0
G1/2ai

2

3e2~ t82t08!/2ai. ~12!

Next we determine the relationship betweent andt8. Sub-
stituting Eq.~11! into dt85dtAAg/uZi u gives

AAg dt5dt8uZi0u1/2F f i01e2ai ~ t82t08!

11 f i0
G1/2ai

2

e2~ t82t08!/2ai,

~13!

and therefore the relationship betweent and t8 is given by

t2t05AuZi0u
Ag E

t08

t8F f i01e2ai ~ t82t08!

11 f i0
G1/2ai

2

e2~ t82t08!/2aidt8.

~14!

Clearly, for any value ofai , this integral can be evaluate
numerically. It determinest5t(t8) as a function oft8. Sub-
stituting the functional inverse of Eq.~14!, t85t8(t), into
Eqs.~11! and~12! determines the entire dynamical evolutio
of the RT mixing fronts.

To illustrate the information contained in this solution, w
consider its late time asymptotics. At late time,t8@t08 . We
rewrite Eq.~14! as

~11 f i0!1/2ai
2A Ag

uZi0u ~ t2t0!5E
t08

t8
@11 f i0e22ai ~ t82t08!#1/2ai

2

3e~ t82t08!/2aidt8

[I 1 . ~15!
03631
Integrating Eq.~15! by parts, we obtain

I 152ai H @11 f i0e22ai ~ t82t08!#1/2ai
2
e~ t82t08!/2ai

2~11 f i0!1/2ai
2
1

f i0

ai
I 2J , ~16!

where

I 2[E
t08

t8
@11 f i0e22ai ~ t82t08!#~122ai

2
!/2ai

2

3e~ t82t08!@~124ai
2
!/2ai #dt8. ~17!

Similarly, integratingI 2 by parts gives

I 25S 2ai

124ai
2D $@11 f i0e22ai ~ t82t08!#~122ai

2
!/2ai

2

3e~ t82t08!@~124ai
2
!/2ai#2~11 f i0!~122ai

2
!/2ai

2
} 1I 3 ,

~18!

where

I 3[
2 f i0~122ai

2!

124ai
2 E

t08

t8
@11 f i0e22ai ~ t82t08!#~124ai

2
!/2ai

3e~128ai
2
!/2ai

2
dt8. ~19!

Here we see that sinceai
2>1/2, I 3 is small relative toI 1 and

I 2 , i.e., I 3!I 2!I 1 , for t8@t08 . Thus, neglecting the smalle
terms<O(I 3), and substitutingI 2 into I 1 , we have the ap-
proximate evaluation

I 152ai H @11 f i0e22ai ~ t82t08!#1/2ai
2
e~ t82t08!/2ai

2~11 f i0!1/2ai
2
1S 2 f i0

124ai
2D

3$@11 f i0e22ai ~ t82t08!#~122ai
2
!/2ai

2
e~ t82t08!@~124ai

2
!/2ai #

2~11 f i0!~122ai
2
!/2ai

2
%J . ~20!

For larget8, e2(t82t08)!1. Using the Taylor series expansio

and lettingx[e(t82t08)/2ai, we further write Eq.~20! in the
form

I 152aixS 12
g1

x
1

g2

x4ai
2 1

g3

x8ai
2D , ~21!

where

g1[~11 f i0!1/2ai
2S 11

2 f i0

~11 f i0!~124ai
2! D , ~22!
2-3
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g2[
f i0

2ai
2~124ai

2!
and g3[

f i0
2 ~122ai

2!

ai
2~124ai

2!
. ~23!

At late time, x@1, x22!x21. Noticing that ai
2>1/2 and

ignoring high order terms, we obtain

~11 f i0!1/2ai
2A Ag

uZi0u ~ t2t0!'2aixS 12
g1

x D . ~24!

Therefore the relationship betweent82t08 and t2t0 is

e~ t82t08!/2ai[x5g11
~11 f i0!1/2ai

2

2ai
A Ag

uZi0u ~ t2t0!.

~25!

In terms ofx, the trajectory and velocity of the mixing front
in Eqs.~11! and ~12! become

uZi~ t !u5
uZi0u

~11 f i0!1/ai
2 ~11 f i0x24ai

2
!1/ai

2
x2 ~26!

and

uVi u5
AAguZi0u

ai~11 f i0!1/2ai
2 S 12

f i0

x4ai
2D S 11

f i0

x4ai
2D ~122ai

2
!/2ai

2

x.

~27!

For large t8, x@1 so these solutions have the approxim
tions

uZi~ t !u5
uZi0u

~11 f i0!1/ai
2 S 11

f i0

ai
2 x24ai

2D x2 ~28!

and

uVi u5
AAguZi0u

ai~11 f i0!1/2ai
2 F12

~4ai
221! f i0

2ai
2x24ai

2 1
f i0

2 ~122ai
2!

2ai
2x28ai

2 Gx.

~29!

We now examine the late time trajectories of the mixi
fronts. Substituting the expression~25! into Eq. ~28!, for ai

2

.1/2 ~in most cases!, the second term in Eq.~28! is negli-
gible compared with the first term. We then get

uZi~ t !u'
1

4ai
2 Ag~ t2t0!21

g1

ai
~11 f i0!21/2ai

2

3AAguZi0u~ t2t0!1
g1

2uZi0u

~11 f i0!1/ai
2 . ~30!

Substituting Eq.~25! into Eq.~29! and neglecting the high

order termsO(x24ai
2
) for large t, we obtain the late time

velocities of the mixing fronts,

uVi u'
AAguZi0u

ai~11 f i0!1/2ai
2 x5

1

2ai
2 Ag~ t2t0!1

g1AAguZi0u

ai~11 f i0!1/2ai
2 .

~31!
03631
-

We see from Eqs.~30! and ~31! that the corrections to the
leading order expressions foruZi u and uVi u depend on the
initial conditions. This result is consistent with recent n
merical simulations of Youngs@16#.

The entire dynamical evolution of the trajectory of th
mixing fronts~for both early and late time! is computed nu-
merically. The results are shown in Fig. 1, where we ha
plotted the exact solution for the bubble front at Atwoo
numberA50.938 as a solid line. The dashed line represe
the late time asymptotic solution and the dotted line deno
the full leading order approximations to the late time asym
totics. From Fig. 1, we see that the full asymptotic soluti
approaches the exact solution and represents it well even
rather modest values ofZb /Zb0 , while the pure leading orde
asymptotics converges much more slowly. Of the three
rametersZi0 , Vi0 , andt0 needed to set the initial condition
for Eq. ~5!, only two specify independent solutions, as t
third amounts to translation along a solution trajectory.
this log-log plot, the slope is determined by the exponent 2
t2, and the intercept is determined by the growth const
ab . Thus both are determined by the leading order asym
totics. The deviation from linearity is determined by th
lower than leading order terms. In more customary plots~lin-
ear in theZ andAgt2 variables!, the slope is determined b
ab , i.e., the leading order asymptotics, and the lower th
leading order asymptotics determines the intercept of
growth curve with the coordinate axes, as well as any p
sible deviation from linearity. The nonzero intercepts a
clearly visible in some of the experimental data and the
viation from linear growth inAgt2 is clearly visible in most
simulation studies, as we see below.

To compare our exact solution with experimental data,
take experiments No. 103 (A50.938) and No. 101 (A
50.829) conducted by Smeeton and Youngs@15# at the
Atomic Weapons Establishment~AWE! as examples. The
bubble drag coefficients for these two experiments, infer
from Eq. ~3! and the experimentally determined value f
ab , is Cb;3.8. Substituting these numbers into th
equation, we obtain the solution for the bubble fron
corresponding to experiment 103 displayed in Fig. 2. H

FIG. 1. The entire dynamical evolution of the trajectory of t
bubble front forA50.938. The solid line represents the exact so
tion, the dashed line denotes the late time asymptotic solution,
the dotted line gives the pure leading order asymptotic solution
2-4
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we have chosenZi050.15Vi0 and usedt0 as a fitting pa-
rameter to obtain agreement with the experimental d
Thus the experimental slope and linear offset yieldsab ,
while the nonlinear offset or intercept givest0 . This figure
shows very good agreement between one of the calcul
solutions and experiment 103, and provides a modest
provement to the pure leading order fit~the dot-dashed line
in Fig. 2! to the data.

In Fig. 3, we show the solution dependence onZi0 . As is
clear from Fig. 3 or from Eq.~30!, a positiveZi0 amounts to
a shift of the solution upwards, and thus gives an intercep
the positiveZi axis. From Fig. 2, we see that the influence
t0 on the solution is primarily to shift the entire solution
the left or right. However, only the valuet0.0 should be
admitted, corresponding to a shift of the solution to the rig
Such a shift will give a solution which has an intercept
the Agt2 axis, or at most a bounded distance along theZb
axis, as occurs in Fig. 2. Similarly, only positiveZi0 should
be admitted as initial data. It follows that a suitable choice
initial conditions will allow for an arbitrary positive intercep
on either axis for the solution, by varyingZi0 or t0 , for
example. However, the intercept does not uniquely determ

FIG. 2. Comparison of the exact solution, late time pure lead
order asymptotic solution, and the experimental data. Multiple ex
solutions are obtained by varyingt0 while Zb0 and Vb0 are held
fixed.

FIG. 3. Dependence of the exact solution on variation of ini
data (Zi0), while Vb0 and t0 are held fixed.
03631
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the ODE initial conditions. Our solution offers a theoretic
explanation of these nonlinear log-log intercepts~i.e., the
intercepts in theZ vs Agt2 plots!. The intercepts for the
linearly plottedZ vs Agt2 line are experimentally observ
able. The initial curvature, or deviation from linearity in th
Zi vs Agt2 plane, occurs too early to be observed experim
tally. We see in Fig. 3 that one of the solutions obtained
varying Zi0 agrees with the data from experiment 101. O
preferred solution, approximatelyZb050.75, bracketed by
the two solid curves in Fig. 3, clearly fits the data of expe
ment 101 better than does the pure late time asymptotics~the
dot-dashed curve in this figure!.

In simulations data can be recorded at all times. The
early plottedZ vs Agt2 curvature or lower than leading orde
asymptotics of the solution may contribute to the observ
dependence ofab on time in the simulations. Simulation
have not been carried to as late a dimensionless time as in
experiments, so the lower than leading order asympto
could make a contribution in the analysis of simulation da
In Fig. 4, we take the front tracking~FT! simulations of Ref.
@17#, with Zb plotted vsAgt2 and compare with the solution
of the buoyancy drag equation~1! with initial conditionst0
50.775,Zb050.185, andVb050.1 for A50.5 andCb54.6
which corresponds to anab;0.0625.

These parameters are determined as follows. Only two
the three initialization parameterst0 , Z0 , V0 change the so-
lution trajectory independently. Thus two parameters
used to make the solution pass through the first point of F
4. The single remaining solution parameter,Cb , is modified
to force the solution to fit the remaining three points. Th
Cb andab5ab(Cb) are determined directly from the simu
lation data. This method of determiningab emphasizes the
later time data, and for this reason, we obtain a lower va
ab50.0625 than the valueab50.07 obtained previously, us
ing a straight line fit to the data@17#.

In order to see the whole picture we also replot these d
in a logarithm scale in Fig. 5 and display the experimen
data from experiment 101. In both figures, the dash-do
line is the leading order asymptotics for this same value

g
ct

l

FIG. 4. Comparison of simulation data with the exact solution
the model equation. The model equation~solid curve! provides a
possible explanation for the curvature of the data. The leading o
asymptotics is shown as the dash-dotted straight line.
2-5
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BAOLIAN CHENG, J. GLIMM, AND D. H. SHARP PHYSICAL REVIEW E66, 036312 ~2002!
ab . The data, for both simulation and experiment cov
about one half decade of variation forZb or Agt2. The ex-
perimental data relate these variables in a nearly linear m
ner, and a fit to the slope determinesab . The simulation data
are not close to linear, and so although the reportedab was
determined previously by a straight line fit, and it is he
determined by a one parameter fit to nonlinear data, nei
has the same significance as the linear fit to a nearly stra
line, as with the experimental data. In any case, we beli
that the valueab50.0625 determined here on the basis
solutions to Eq.~1! improves on that determined earlier u
ing a straight line fit. In both the experimental and simulati
case, Eq.~1! offers preasymptotic behavior as a possib
cause of the deviation from linearity of the data. Finally, w
note that the simulation and experimental data cannot
compared directly. The axes in all the figures have units
length. For the experiments the length unit is determined
physical units, while the length unit for the simulation
arbitrary. However, to fit the simulation data and the expe
mental data in a single solution of Eq.~1! shows qualitatively
the asymptotic regime of the experiment data and the pr
ymptotic regime of the simulation data.

In RM mixing, g(t)5d(t). For t.0, Eq. ~2! becomes

dVi

dt
52~21! iCi

12~21! iA

2

Vi
2

uZi u
, i 51,2. ~32!

In terms of the scaled variables,Vi8[Vi /AAuZi u, dt8
[dtAA/uZi u, it reduces to

duVi8u
dt8

52 1
2 $11Ci@12~21! iA#%uVi8

2u52ai
2uVi8

2u.

~33!

This equation is easily solved by integrating twice with t
results

FIG. 5. Comparison of simulation data with the exact solution
the model equation in a large scale. The solid curves provid
possible explanation for the curvature of the preasymptotic sim
tion data and for the straight line of the asymptotic experimen
data. The pure leading order asymptotics is shown in the d
dotted straight line.
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er
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f

e
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uVi8u5F 1

uVi08 u
1ai

2~ t82t08!G21

,

uZi u5uZi0u@11ai
2uVi08 u~ t82t08!#1/ai

2
. ~34!

The correlation function betweent2t0 andt82t08 is found as

11ai
2uVi08 u~ t82t08!

5F11A A

uZi0u
~112ai

2!

2
uVi08 u~ t2t0!G2ai

2/~112ai
2
!

.

~35!

Substituting this into Eq.~34!, the trajectory and velocity of
the RM mixing edges at timet are obtained as follows:

uZi~ t !u5uZi0uF11
~112ai

2!

2uZi0u
uVi0u~ t2t0!G2/~112ai

2
!

~36!

and

uVi~ t !u5uVi0uF11
~112ai

2!

2uZi0u
uVi0u~ t2t0!G ~122ai

2
!/~112ai

2
!

.

~37!

These solutions are consistent with the solutions in Ref.@18#,
with the added feature that the exponents and coefficient
Eqs. ~36! and ~37! are here explicitly related to the dra
coefficient and Atwood number.

For larget, the trajectory and the velocity of the mixin
front of phasei have the asymptotic behavior

uZi~ t !u;uZi0u~12u i !uVi0uu iu i
2u i~ t2t0!u i ~38!

and

uVi~ t !u;uZi0u~12u i !uVi0uu iu i
12u i~ t2t0!u i21, ~39!

whereu i[2/(112ai
2). Clearly, forA51, us51. This result

agrees with theory and with existing experiment data.
also see that unlike RT mixing, the dynamical evolution
the mixing layer in RM mixing always depends strongly o
the initial conditions.

IV. CONCLUSIONS

A complete, closed form solution for the edges of t
mixing zone of acceleration driven RT and RM mixing la
ers is given; in the RT case, the solution contains a qua
ture. The late time RT asymptotics, through terms which
O(1) in t, is obtained approximately in closed form.

The solution is based on a buoyancy-drag ODE, with
previously validated choice of drag coefficient. The solutio
provide the clearest explanation offered to date of the of
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noted fact that RT mixing loses memory of its initial cond
tions, while RM mixing does not. RT mixing, even for stea
acceleration, satisfies a uniform growth law proportional
t2 only to leading order in the late time asymptotics, wh
the lower order growth terms break this law and also disp
dependence on initial conditions. Our analysis shows this
dependence on initial conditions. The RT dependence on
tial conditions can be seen in the experimental data and e
more clearly in the simulation data.
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